 See manifold (automotive engineering) for an account of that topic.
In mathematics, a manifold is a topological space that looks locally like the "ordinary" Euclidean space R^{n} and is a Hausdorff space. An example is the surface of a sphere such as Earth, which is not a plane, but small patches of it are homeomorphic to (i.e., topologically equivalent to) patches of the Euclidean plane. To make precise the notion of "looks locally like" one uses local coordinate systems or charts. A connected manifold has a definite topological dimension, which equals the number of coordinates needed in each local coordinate system. What follows below is a clean, contemporary mathematical treatment of manifolds; the foundational aspects of the subject were clarified during the 1930s, making precise intuitions dating back to the latter half of the 19th century, and developed through differential geometry and Lie group theory.
If the local charts on a manifold are compatible in a certain sense, one can talk about directions, tangent spaces, and differentiable functions on that manifold. These manifolds are called differentiable. In order to measure lengths and angles, even more structure is needed: one defines Riemannian manifolds to recover these geometrical ideas.
Differentiable manifolds are used in mathematics to describe geometrical objects; they are also the most natural and general setting to study differentiability. In physics, differentiable manifolds serve as the phase space in classical mechanics and four dimensional pseudoRiemannian manifolds are used to model spacetime in general relativity.
4 Additional structures and generalizations
Table of contents 

Topological manifolds
A topological nmanifold with boundary is a Hausdorff space in which every point has an open neighbourhood homeomorphic to either an open subset of E^{ n} (Euclidean nspace) or an open subset of the closed half of E^{ n}. The set of points which have an open neighbourhood homeomorphic to E^{ n} is called the interior of the manifold; it is always nonempty. The complement of the interior, is called the boundary; it is an (n1)manifold.
A manifold with empty boundary is said to be closed if it is compact, and open if it is not compact.
Manifolds inherit many of the local properties of Euclidean space. In particular, they are locally pathconnected, locally compact and locally metrizable. (Readers should see the Topology Glossary for definitions of topological terms used in this article.) Being locally compact Hausdorff spaces they are necessarily Tychonoff spaces. Requiring a manifold to be Hausdorff may seem strange; it is tempting to think that being locally homeomorphic to a Euclidean space implies being a Hausdorff space. A counterexample is created by deleting zero from the real line and replacing it with two points, an open neighborhood of either of which includes all nonzero numbers in some open interval centered at zero. This construction, called the real line with two origins is not Hausdorff, because the two origins cannot be separated.
Every connected manifold without boundary is homogeneous.
It can be shown that a manifold is metrizable if and only if it is paracompact. Nonparacompact manifolds (such as the long line) are generally regarded as pathological, so it's common to add paracompactness to the definition of an nmanifold. Sometimes nmanifolds are defined to be second countable, which is precisely the condition required to ensure that the manifold embeds in some finitedimensional Euclidean space. Note that every compact manifold is secondcountable, and every secondcountable manifold is paracompact.
Differentiable manifolds
It is easy to define topological manifold, but it is very hard to work with this object. The differatiable structure defined below makes possible to apply "calculus" on manifold.
We start with a topological manifold M without boundary. An open set of M together with a homeomorphism between the open set and an open set of E^{n} is called a coordinate chart. A collection of charts which cover M is called an atlas of M. The homeomorphisms of two overlapping charts provide a transition map from a subset of E^{n} to some other subset of E^{n}. If all these maps are k times continuously differentiable, then the atlas is an C^{k} atlas.
Example: The unit sphere in R^{3} can be covered by two charts: the complements of the north and south poles with coordinate maps  stereographic projections relative to the two poles.
Two C^{k} atlases are called equivalent if their union is a C^{k} atlas. This is an equivalence relation, and a C^{k} manifold is defined to be a manifold together with an equivalence class of C^{k} atlases. If all the connecting maps are infinitely often differentiable, then one speaks of a smooth or C^{∞} manifold; if they are all analytic, then the manifold is an analytic or C^{ω} manifold.
Intuitively, a smooth atlas provides local coordinate systems such that the changeofcoordinate functions are smooth. These coordinate systems allow one to define differentiability and integrability of functions on M.
Associated with every point on a differentiable manifold is a tangent space and its dual, the cotangent space. The former consists of the possible directional derivatives, and the latter of the differentials, which can be thought of as infinitesimal elements of the manifold. These spaces always have the same dimension n as the manifold does. The collection of all tangent spaces can in turn be made into a manifold, the tangent bundle, whose dimension is 2n.
Once a C^{1} atlas on a paracompact manifold is given, we can refine it to a real analytic atlas (meaning that the new atlas, considered as a C^{1} atlas, is equivalent to the given one), and all such refinements give the same analytic manifold. Therefore, one often considers only these latter manifolds.
Not every topological manifold admits such a smooth atlas. The lowest dimension is 4 where there are nonsmoothable topological manifolds. Also, it is possible for two nonequivalent differentiable manifolds to be homeomorphic. The famous example was given by John Milnor of wild 7spheres, i.e. nondiffeomorphic topological 7spheres.
Classification of manifolds
It is known that every secondcountable connected 1manifold without boundary is homeomorphic either to R or the circle. (The unconnected ones are just disjoint unions of these.)
For a classification of 2manifolds, see Surface.
The 3dimensional case may be solved. Thurston's Geometrization Conjecture, if true, together with current knowledge, would imply a classification of 3manifolds. Grigori Perelman may have proven this conjecture; his work is currently being evaluated, as of June 14, 2003.
The classification of nmanifolds for n greater than three is known to be impossible; it is equivalent to the socalled word problem in group theory, which has been shown to be undecidable. In other words, there is no algorithm for deciding whether given manifold is simply connected, however there is a classification of simply connected manifolds of dimension ≥ 5.
Additional structures and generalizations
In order to do geometry on manifolds it is usually necessary to adorn these spaces with additional structures, such as the differential structure discussed above. There are numerous other possibilites, depending on the kind of geometry one is interested in:
 A Riemannian manifold is a differentiable manifold on which the tangent spaces are equipped with inner products in a differentiable fashion. The inner product structure is given in the form of a symmetric 2tensor called the Riemannian metric. On a Riemannian manifold one has notions of length, volume, and angle.
 A pseudoRiemannian manifold is a variant of Riemannian manifold where the metric tensor is allowed to have an indefinite signature (as opposed to a positivedefinite one). PseudoRiemannian manifolds of signature (3, 1) are important in general relativity.
 A symplectic manifold is a manifold equipped with a closed, nondegenerate, alternating 2form. Such manifolds arise in the study of Hamiltonian mechanics.
 A complex manifold is a manifold modeled on C^{n} with holomorphic transition functions on chart overlaps. These manifolds are the basic objects of study in complex geometry.
 A Kähler manifold is a manifold which simultaneously carries a Riemannian structure, a symplectic structure, and a complex structure which are all compatible in some suitable sense.
 A Finsler manifold is a generalization of a Riemannian manifold.
 A Lie group is C^{∞} manifold which also carries a smooth group structure. These are the proper objects for describing symmetries of analytical structures.
An orbifold is yet an another generalization of manifold, one that allows certain kinds of "singularities" in the topology. Roughly speaking, it is a space which locally looks like the quotient of Euclidean space by a finite group. The singularities correspond to fixed points of the group action.
The category of smooth manifolds with smooth maps lacks certain desirable properties, and people have tried to generalize smooth manifolds in order to rectify this. The diffeological spaces use a different notion of chart known as "plots". Differential spaces and Frölicher spaces are other attempts.
References
 Kirby, Robion C.; Siebenmann, Laurence C. Foundational Essays on Topological Manifolds. Smoothings, and Triangulations. Princeton, New Jersey: Princeton University Press (1977). ISBN 0691081905. A detailed study of the category of topological manifolds (with continuous maps as morphisms).